Software Architecture
Reconstruction:
Practice Needs and
Current Approaches

Liam O’Brien
Christoph Stoermer
Chris Verhoef

August 2002

TECHNICAL REPORT
CMU/SEI-2002-TR-024
ESC-TR-2002-024 '

22 107

v
»

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of “Don't ask, don't tell, don't pursue” excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

—=. CarnegieMellon

——

Software Engineering Institute

Pittsburgh, PA 15213-3890

Software Architecture
Reconstruction:
Practice Needs and

Current Approaches
CMU/SEI-2002-TR-024
ESC-TR-2002-024

Liam O’Brien
Christoph Stoermer
Chris Verhoef

August 2002

Product Line Systems

Unlimited distribution subject to the copyright.

[/ L0} 22112002

This report was prepared for the

SEI Joint Program Office

HQ ESC/DIB

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

% ”‘547%;
4%

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2002 by Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK. OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cnu.edw/publications/pubweb.html).

Table of Contents

EXECULIVE SUMMAY......ccciiccricrectcctneemnessmsesanessnsresnsesssssessnsssssssssnsesmeeessnssssnsasanses v
L T T vii
B I [(T (3o o o OO 1
2 Practice SCeNAriosccccvvvmcrissseiisisensiisssssinescnessessaressnasesssrassssssssesssnsssonsnnes 3
2.1 The VIEW-Set SCENAMIOccueeeeeereeeirteeseeeeeeeeeereeeeesessesesesessss s essesesesnes 3
2.2 The Enforced-Architecture SCeNario.........ccovuvveeeeeeecveerirecceee e ceseneeeeeens 5
2.3 The Quality-Attribute-Changes SCeNnarioccccecveevereeeevereevereesverssnsesensns®
2.4 The Common and Variable Artifacts Scenario...........cccceevvevereeeeeererneesnnnnn. 7
2.5 The Binary Components SCENATIOccceevveerveeeieeeieerrreeeecreeeenesesenens 8
2.6 The Mixed-Language Scenario........cccovvvieirieecceireiecciienreeeecevrreenee e naneees 9
3 Existing Approaches and TOOIS.......cccccceeeeetrerrserecsccerersneressnesessesseressnsessans 1"
3.1 Manual Architecture Reconstruction................. eessrrertreeeeetenaeaaaaaaasansnnnnnas 11
3.2 Manual Reconstruction with Tool Support.........ccccceceienviinreirnnerciereeen. 11
3.3 Query Languages for Reconstructionccoccvveeecienreceevecceeeeeecrereenns 13
3.4 Other TEChNIQUESccccceeeiirieieeitneeseeeeeeeccreeee e ee e saeeereeeserssneesssresssnnns 15
4 EValuationciiciiiiiiecmininesresnsssissssssisssesinsscnsessnesesssenesessesesssannensssnsnerans 17
5 Current and FUtUre WOrKcccuvceeereccircincnincsensesssneserssmmessssssesssnssssssnsessses 19
6 Conclusions. . . certestrbsteretese e ens e e semesaseans 21
References........ccccueeuues eereesesersesaes et s e et m et e et ettt n e 23

CMU/SEI-2002-TR-024 i

CMU/SEI-2002-TR-024

List of Tables

Table 1: Coverage of Practice Scenarios

CMU/SEI-2002-TR-024

CMU/SEI-2002-TR-024

Executive Summary

This report describes the needs, current approaches, methods, and tools for reconstructing
software architectures that the Software Engineering Institute (SEI) has identified in its work
with Department of Defense (DoD) and commercial organizations. These needs and ap-
proaches are presented through descriptions of several practice scenarios for architecture re-
construction. The following information is provided for each scenario: name, context, prob-
lem statement, example, and desired solution.

This report is intended for people who need to better understand existing systems or who are
considering using architecture reconstruction but do not know about existing approaches,
methods, and tools. The approaches covered in this document vary from manual reconstruc-
tion to tool-supported manual reconstruction and semi-automated reconstruction, and include
data mining and the use of architecture description languages.

The existing approaches are evaluated in relation to the needs presented in the practice sce-
narios. The result is a list of deficiencies that could be overcome through improvements in
the techniques used for architecture reconstruction. An example of such a deficiency is the
lack of approaches, methods, and tools for reconstructing the architecture of a system in
which several different languages have been used. Another example is the lack of approaches,
methods, and tools for reconstructing an architecture that contains binary components but
where the source code for these components is not available to the people doing the recon-
struction.

This report concludes with a summary of the work that the SEI is doing to overcome some of
these deficiencies. Further research should be conducted to identify better approaches and
methods, and to develop tools to support them.

CMU/SEI-2002-TR-024 v

vi

CMU/SEI-2002-TR-024

Abstract

Software architectures serve as the blueprints for systems, and they are central to the devel-
opment of software product lines and the design of component-based systems. In existing
systems, the architecture often must be reconstructed to reflect the as-built system accurately.
This report presents the concept of practice scenarios for architecture reconstruction, which
outline common problem/solution pairs that can be used in the strategic application of archi-
tecture reconstruction at Department of Defense (DoD) and commercial organizations. Based
on an investigation of already developed and presented reconstruction approaches, the report
describes deficiencies that have been uncovered in several practice scenarios and proposes
improvements. '

CMU/SELI-2002-TR-024 vii

viii CMU/SEI-2002-TR-024

1 Introduction

Architecture reconstruction is the process by which the architecture of an implemented sys-
tem is obtained from the existing system. Several approaches for architecture reconstruction
have been developed and presented in the past. These approaches have been used for

e evaluating the conformance of the as-built architecture to the as-documented architecture

e reconstructing architecture descriptions for systems that are poorly documented or for
which documentation is not available

e analyzing and understanding the architecture of existing systems to enable modification
of the architecture to satisfy new requirements and to eliminate existing software defi-
ciencies

There is continuing emphasis on software architectures in Department of Defense (DoD) and
commercial organizations. Yet, research into software architectures is still maturing, and the
role and potential of architecture reconstruction is not fully understood.

This report describes scenarios in which architecture reconstruction contributes to well-
known challenges, such as reconstructing poorly documented software systems, as well as
scenarios that expand the role for reconstruction in the overall development process. Recon-
struction from available source code may no longer be a standard approach, because vendors
of commercial components may purposely make source code unavailable. Organizations are
more likely to support reconstruction if it provides a tangible benefit to the development ef-
fort.

We propose a set of practice scenarios, which are similar to patterns, that are based on our
experiences of applying architecture reconstruction in industrial settings and on research in
the architecture community. These scenarios include the identification of needs for methods
and tools, and approaches to help satisfy those needs. Current methods, tools, and approaches
have been investigated to determine if they cover the needs and to identify where gaps exist
that could be filled by further research and development.

Patterns are problem/solution pairs that have, for example, been found to be very useful in
architecture [Alexander 79]. They have been successfully applied in software settings (design
patterns [Buschmann 96}. rroduct line practice patterns [Clements 02a], economics [Etzioni
64}, and architecture [Ai:-..ader 79]). In this report, even though the practice scenarios that
we describe are very similar to patterns, we use the term practice scenario rather than the

CMU/SES-2002-TR-024 1

term pattern, because so far we have described desired solutions rather than ready-to-use so-
lutions. Our scenarios are relatively general; they can be applied to a large set of similar
situations.

Practice scenarios for architecture reconstruction describe recurring situations in which cer-
tain problems can be solved by applying proposed solution strategies. Such scenarios are
beneficial for development organizations as well as consulting companies that perform archi-
tecture reconstructions, because they allow them to identify how reconstruction can be used
and possibly applied in their situation. These scenarios are useful for organizations and could
guide the practice of architecture reconstruction at such organizations.

The practice scenarios provide approaches for achieving desired solutions. An investigation
of current reconstruction approaches has resulted in the identification of some deficiencies
and a need to improve the state of the art in architecture reconstruction.

The remainder of this report is organized as follows: Section 2 outlines a set of practice sce-
narios. Section 3 lists the current approaches in architecture reconstruction. Section 4 pro-
vides an evaluation of how well these approaches cover the solution approaches of the prac-
tice scenarios described in Section 2. Section 5 outlines our current research and future work.
Section 6 summarizes our conclusions.

2 CMU/SEI-2002-TR-024

2 Practice Scenarios

This section captures practice scenarios that we have detected in applying architecture recon-
struction in DoD and industrial settings. Our practice scenarios are not invented. Rather, they
are discovered as useful solutions in recurring problem contexts.

The format used to describe the practice scenarios is derived from work by Buschmann
[Buschmann 96] and consists of

e the scenario name with a short description

the context in which the scenario applies

the problem raised by the context

e an example experienced by the authors

the desired solution the scenario should offer

The scenario format differs from Buschmann’s format in two ways: First, an example is
added to illustrate the industrial context. Second, the solution is a desired solution rather than
the performed solution. The purpose is to offer evaluation criteria that can be used to measure
how current approaches in architecture reconstruction are contributing to the desired solution
space.

The described scenarios cover a set of architecture reconstruction uses that we have encoun-
tered. We do not believe that this is an exhaustive set, and we encourage readers to enhance

the proposed scenarios, add solution alternatives, or add further scenarios from their experi-
ences.

2.1 The View-Set Scenario

Name: The view-set scenario covers the identification of architectural views that sufficiently
describe a software system.

Context: Architecture (re)documentation typically involves the use of a model from which a
collection of architectural views and their interrelationships can be extracted. A view consists
of a representation of a set of system elements and their interrelationships [Clements 02b].
Typical views include the module view, concurrency view, and deployment view, as well as

CMU/SEI-2002-TR-024 3

the top-level context diagram, which presents a system overview. Several view sets are cur-
rently in common use. Examples include the 4+1 view by Kruchten [Kruchten 95], the four-
view approach by Hofmeister, Nord, and Soni [Hofmeister 00], and the 2+2 view by Lassing
[Lassing 02]. Views are categorized by view types (module, component-and-connector, and
allocation) and view styles [Clements 02b]. An example is the component-and-connector
view type containing a client/server or blackboard view style.

Problem: The problem is to determine which architecture views sufficiently describe the sys-
tem and cover stakeholder needs.

Example: The process improvement group, within an organization that produces embedded
software, would like to evaluate one of the organization’s products in a specific market seg-
ment. The technical management team has experienced the recurring difficulty of how to de-
cide how well customer requirements are covered by a software implementation. The product
lacks an appropriate architecture description. With the exception of providing some inter-
views, the developers are not available because of other urgent commitments. One activity of
the process improvement group is to contract with an analyst to reconstruct the architecture
from existing source code to produce a set of architecture views that will reveal the required
information.

Desired Solution: The desired solution consists of a method to determine the relevant archi-
tecture view set for a particular system. The selected view set will enable the organization
commissioning the reconstruction to write a contract with the analyst performing the recon-
struction.

The method should contain a catalog of architecture views, notations, and system approaches
to enable view selection. The catalog has several dimensions. First, there are various stake-
holders, such as developers, architects, project managers, maintainers, testers, or analysts (see
our example of the process improvement group, above). The views must address the specific
aspects that those stakeholders represent. A further dimension is the use of an appropriate
notation. The purveyors of the unified modeling language (UML) claim that it is “the stan-
dard notation for software architectures” [Clements 02b]. However, other notations would
also be appropriate. Finally, various types of systems are developed using different ap-
proaches. Examples include object-oriented systems or functional systems, and customized
systems or product line systems.

A view catalog would benefit both the analyst and the organization. The analyst could select,
adapt, and apply an appropriate view set for a specific system, and the organization would not
be confronted with box-and-arrow figures, which are hard to comprehend and communicate.
The view set, purpose, and notation would be streamlined in an overall architecture approach.
Conclusively, the selected view set establishes the contract between the analyst and the
organization.

4 CMU/SEI-2002-TR-024

2.2 The Enforced-Architecture Scenario

Name: The enforced architecture scenario covers the problem of consistency between the as-
built architecture and the as-designed architecture.

Context: Architectural patterns and quality attributes are not “first-class citizens” during the
implementation of a system. For example, a layer or blackboard has no corresponding lan-
guage construct in many of the commonly used languages. As a result of this, the as-built and
as-documented architectures are often not in conformance; in other words, “language invades
design.” Another result can be an inappropriate or poor implementation of the architecture
patterns inconsistent with quality attributes. Consistency and enforcement of design and im-
plementation may be difficult to achieve in practice, especially in large development projects.
An analysis of architecture conformance would show how well the as-built architecture com-
plies with the as-documented architecture.

Problem: The problem is that consistent traceability information is missing, from architec-
ture design through code implementation.

Example: An organization is developing a product consisting of both in-house-developed and

~outsourced components. The software architects in the organization previously developed the

software architecture, and the participating development organizations (both in-house and
external) came to a “final” agreement about the design. Some unexpected problems occurred
during the integration tests. Although the product was delivered successfully, the organization
contracted with a specialist to measure the conformance of the as-documented architecture
with the as-built architecture to mitigate the risks for future product versions. .

Desired Solution: The desired solution should consist of a method and supporting tools to
enforce architecture conformance.

Ideally, the method should be an integral part of a general forward-engineering tool. A meta-
model would capture traceability relationships, which would be analyzed, measured, and en-
forced by a tool.

A further application of architecture conformance could originate from an envisioned envi-
ronment in which commercial off-the-shelf (COTS) software is used (see the binary compo-
nents scenario later). Assume that component descriptions are available (of interfaces, for
example) and that an organization has defined a software architecture for a system. The
method and tool should measure how well components comply with the defined architecture.

CMU/SEI-2002-TR-024 5

The overall benefit of reconstruction in this scenario is consistency and compliance of archi-
tectures, decisions, and design guidelines throughout further design and implementation. Fur-
thermore, contractual issues could be investigated, as in the example above.

2.3 The Quality-Attribute-Changes Scenario

Name: The quality attribute changes scenario covers the question of how architecture pat-
terns are used to satisfy quality requirements and to what extent changes to quality attributes
impact a system.

Context: Quality attributes are achieved primarily through attention to software architectures.
Design decisions embodied by software architecture are strongly influenced by the need to
achieve quality attribute goals. However, quality attributes are not orthogonal. That means
that design decisions reflect tradeoffs between competing qualities. For example, a cyclic
executive [Locke 92] contributes positively to memory performance but negatively to exten-
sibility. The tradeoff decisions must be balanced by considering the business priorities on
quality attributes. Typically those tradeoffs are done during very early design phases. Later
changes to quality attributes may have deep impacts on the system.

Problem: The problem is how to determine the relationship among quality attributes and ar-
chitecture elements.

Example: An organization wants to migrate one of its applications to a Web-based environ-
ment. One of the organization’s concerns is how a change of quality attributes (e.g., perform-
ance—the system must handle 100,000 transactions instead of 1,000 transactions per day—or
security—sécurity must be heightened in a Web environment) would impact the current sys-
tem. To date, soft-real-time performance issues were not a critical factor in the product set-
ting, because the transactions were settled in a batch environment. An appropriate architec-
ture description for an assessment is not available. The organization orders an architecture
reconstruction with the focus on determining how quality attributes are supported in its cur-
rent architecture and which parts of the architecture would be affected by changes in the qual-
ity attributes.

Desired Solution: The solution should consist of a method and too! for recovering informa-
tion about how a system contributes to particular quality attributes.

The solution addresses a couple of open research issues in the architecture community. For
example, which architecture patterns support which quality attributes? If they support certain
quality attributes, how do we measure their contribution?

6 CMU/SEI-2002-TR-024

This scenario provides two major benefits. First, it enables the identification of architecture
and design patterns that contribute to certain quality attributes. Second, it can uncover design
decisions that help developers balance competing quality attributes.

2.4 The Common and Variable Artifacts Scehario

Name: Commonality and variability are used in product line environments so that organiza-
tions can reduce costs by reusing common assets. The common and variable artifacts sce-
nario provides models and techniques for analyzing the products in a domain with respect to
their common and variable parts.

Context: Product lines embody a strategic reuse model of products sharing a market seg-
ment. As opposed to opportunistic reuse, in strategic reuse only those components that belong
to the core assets of a product line are reused. The software architecture reflects common and
variable parts of the system and offers appropriate design constructs. Product lines evolve out
of the commonalities among existing products in a specific market segment. Typically, sev-
eral products are delivered until a systematic migration to a product line takes place. To
evaluate the potential for creating a product line from existing products, it is necessary to
“mine” their architectures and analyze the commonality and variability across those architec-
tures.

Problem: The problem is to identify the common and variable parts in several similar prod-
ucts.

Example: A business unit of a large organization has three development departments produc-
ing similar products worldwide. As part of a consolidation effort, a group of analysts investi-
gates the potential of using a software product line approach to increase the business value of
the organization’s products. One task is to conduct a technical analysis of commonality and
variability across products from the development departments. The group determines that the
organization should conduct an in-depth architecture reconstruction for three representative
products, one from each department, in order to reveal the parts of each system that are most
amenable for consolidation into one overall system.

Desired Solution: The desired solution consists of methods and tools to identify and evaluate
common and variable parts across products.

An analysis at the source level is difficult because different structures, naming conventions,
or even implementation languages might have been used. Therefore architecture descriptions,
including architecture patterns, quality attributes, component interfaces, and design ration-
ales, provide an appropriate abstraction level for comparing existing products in a market
segment.

CMU/SEI-2002-TR-024 7

This scenario provides two major benefits. First, the analysis can contribute rational argu-

ments for product line migration in situations that may be politically difficult. Second, the

insights gained provide useful information for applying an architecture-based design effort
for the generation of a new product line.

2.5 The Binary Components Scenario

Name: The binary components scenario covers architecture reconstruction using binary com-
ponent descriptions.

Context: The software industry is quickly moving toward systems based on commercial
components. A component in this context has three characteristics: it is produced by a vendor,
who sells the component or licenses its use; it is released by a vendor in binary form; and it
offers an interface for third-party integration [Wallnau 02]. Existing architecture reconstruc-
tion methods abstract from the source code. Reconstructing software architecture in binary
component settings is heavily dependent on the quality of the component interface descrip-
tions. In addition, the detail in these descriptions may vary from vendor to vendor.

Problem: The problem is conducting architecture reconstruction in settings where COTS
components are used.

Example: An organization is developing a Web-based application consisting of a Web server
from one vendor and a database from another. In addition, two other commercial components
must be integrated into the system. The organization’s software architects want to define the
entire software architecture and understand what “glue parts” the organization must develop
between the components (such as forms and data transformations). The component interfaces
and partial architectural descriptions (e.g., the Web server and database architectures) are
available; the source code for the COTS components is not.

Desired Solution: The desired solution consists of methods and tools to support architecture
reconstruction from binary components.

The solution addresses a couple of open research issues in the architecture field. For example,
how do we sufficiently describe components to be able to extract a software architecture?
How do we know that assembled components satisfy the desired software architecture? Fur-
thermore, how trustworthy are component descriptions?

Assembling commercial components to achieve functional quality goals is a difficult task in
the current component market. A commonly used approach is to build small toy examples to

8 CMU/SEI-2002-TR-024

explore deficiencies so as to mitigate the risks for real products. Architecture reconstruction
from commercial component descriptions could help architects detect the overall product
structure and the dependencies among components.

2.6 The Mixed-Language Scenario

Name: Software systems implemented in several programming languages are commonplace
today. Jones states that “about 30% of U.S. software applications contain at least 2 languages,
based on our clients’ portfolios” [Jones 98). The mixed-language scenario addresses the need
for models and techniques that can be used to analyze products that are implemented in a va-
riety of languages and language types (procedural and object oriented).

Context: Many existing systems are implemented in several programming languages, includ-
ing C, C++, and Fortran. These systems may also include start-up files that configure the sys-
temn at runtime based upon a set of script and data files. These systems may also have make-
files or build scripts that contain architecturally relevant information. How can all of the
various components in several different languages and language types be modeled within a
single reconstruction tool? What are the abstraction mechanisms for building architectural
views from the source information from particular language types (procedural and object ori-
ented), and how can these be combined to produce architectural views that incorporate the
different types of information?

Problem: The problem is to reconstruct the architecture of a system that is implemented in
more than one language.

Example: An organization wants to understand its existing system, because it must integrate
parts of that system with one being built by another organization. No architecture documenta-
tion of the existing system exists, and there is no one in the organization who knows all of the
existing system. Certain individuals know parts of the system. The system is implemented in
several languages.

Desired Solution: Architecture reconstruction techniques and tools should be able to handle
the reconstruction of a system that is implemented in more than one language. Techniques
have already been developed to extract information from mixed-language applications [Brand
98], and the solution is to use that information to build architecture representations of sys-
tems.

Benefit: Architecture reconstruction mechanisms that apply to source information from sys-
tems implemented in particular language types are useful. Many new systems are being im-
plemented in a variety of languages. Approaches to combining the abstractions for various
language types will provide the ability to reconstruct the architecture of these systems.

CMU/SEI-2002-TR-024 9

10

CMU/SEI-2002-TR-024

3 Existing Approaches and Tools

Many approaches to architecture reconstruction and tools to support those approaches have
been covered in the literature. Categories of approaches and tools include

e manual architecture reconstruction
e manual reconstruction with tool support
e query languages for writing patterns to build aggregations automatically

e use of other techniques, including clustering, data mining, and using architecture descrip-
tion languages

The following are some of the main approaches in each category. It is not an exhaustive list,
but it enumerates a representative set of approaches and tools. '

3.1 Manual Architecture Reconstruction

Laine presents work that he carried out in manually reconstructing the architecture of an ob-
ject-oriented system to develop ideas that could be applied to the development of other ob-
ject-oriented systems [Laine 01]. To reconstruct the architecture, a high-level overview of the
system was generated, and code was assigned to various parts of the view. Examination of the
code revealed architecture components. Clustering and abstraction were used to build com-
ponent views. No tools were used to support the reconstruction effort. The only utilities used
were the UNIX utilities Emacs and Grep. Any views that were generated were drawn using
pen and paper.

3.2 Manual Reconstruction with Tool Support

The following set of approaches and tools support manual reconstruction.

Portable Bookshelf (PBS)

The Portable Bookshelf (PBS) is a toolkit used for generating a “software bookshelf” [PBS
02, Finnigan 97]. A software bookshelf for a large system can provide an easily accessible
Web-based structure for stofing information about a system. The information contained in the
bookshelf includes source code, as well as other documentation about the system. Other in-

CMU/SEI-2002-TR-024 11

formation that can be accessed includes test cases, performance analysis, future plans, archi-
tectural diagrams, and information about a project’s history. Bowman and others have pre-
sented a method for extracting architectural documentation from the code of an implemented
system using parts of the PBS [Bowman 99]. In an example, they reconstructed the architec-
ture of the Linux system. They analyzed source code using the cfx (c-code fact extractor)
program to obtain symbol information from the code and generated a set of relationships
among the symbols. They then manually created a tree-structured decomposition of the Linux
system into subsystems and assigned the source files to those subsystems. Next, they used the
grok fact manipulator tool to determine relationships among the identified subsystems, and
they used the Isedit visualization tool to visualize the extracted system structure. Refinement
of the resulting structure was carried out by moving source files among subsystems.

Rigi is a tool for visualizing and manipulating software information [Rigi 02]. It is end-user
extendable, contains an interpreter for applying operations to the visualized information, and
allows for manual manipulation of the information that is presented to the user. For architec-
ture reconstruction, one can apply groupings to the underlying elements by manually select-
ing nodes in the visualization and collapsing them, or by applying operations in the inter-
preter. The tool provides various capabilities for filtering node and arc types, and it also
enables the application of various layouts to the presented views. In addition, Rigi provides
parsers for extracting information in Rigi Standard Format (RSF) for various languages.

SHriMP

SHriMP is an information-visualization and navigation system [Shrimp 02, Storey 01]. It can
be used to visualize information extracted from a system. When used for reconstruction, the
tool can assist a user in generating high-level architectural views of a system by manually
grouping and aggregating elements in a graph. The tool takes as input RSF files and, when
used with the Rigi tool, can provide useful navigation and visualization of the architectural
views generated using Rigi.

KLOCwork inSight Too!

KLOCwork inSight uses code-analysis algorithms to extract software architecture views, in-
teractions, logic flow, and execution threads directly from the source code of both full and
partial systems [Klocwork 02]. The product description for KLOCwork inSight states that it
“allows for architectural comprehension, automatic control, and management through its
graphic visualization of software architecture, architectural rules setting, and automatic track-
ing capabilities.” The tool does not allow a user to build or apply patterns to abstract the ar-
chitecture from the underlying information extracted from the source code. Rather, the tool

12 CMU/SEI-2002-TR-024

allows the user to select source elements from the visualization and to create higher level
groupings of those elements into architectural components, thus facilitating architecture re-
construction. It allows architectural control and management through its architectural rules-
setting and automatic-tracking capabilities. This ensures that “no ‘risky’ code is submitted
and keeps architectural integrity in check” [Klocwork 02].

- 3.3 Query Languages for Reconstruction

The following set of approaches and tools support the use of query languages for reconstruc-
tion.

Mitre

Harris and others have presented a framework for architecture reconstruction that uses a
combined bottom-up and top-down approach [Harris 95a, Harris 95b]. The framework con-
sists of three components: the architectural representation, the source code recognition engine
and supporting library of recognition queries, and a “bird’s-eye” program-overview capabil-
ity. The bottom-up analysis uses the bird’s-eye view to display the system’s file structure and
components, and to reorganize information into more meaningful clusters. The top-down
analysis uses particular architectural styles to define components that should be found in the
software. Recognition queries are then run to determine whether the expected components
exist. Harris’s approach is based upon a set of queries, which are independent of the imple-
mentation language and that are applied to an abstract syntax tree (AST). Parsing the source
code of a system generates the AST, which in this case is specific to a particular program-
ming language. The application mechanism of the queries is specific for each programming
language. Thus, if a new language must be handled, a new AST must be developed, a parser
must be written, and a new application mechanism must be derived. Lammel and Verhoef
report on efforts to solve this problem [Limmel 01a, Limmel 01b].

Dali

Dali is a collection of various tools in the form of a workbench [Kazman 99]. Included in the
workbench are the Rigi tool and the PostgreSQL relational database. Rigi provides visualiza-
tion and manipulation of the views that are generated, and the Dali extension to Rigi provides
the capability of defining and applying query patterns to the underlying data to generate vari-
ous architectural views of the system. Information is extracted from the source code of a sys-
tem using software analysis tools and then loaded into Dali. Information can also be obtained
from other sources (such as other forms of documentation) and loaded into Dali. This infor-

mation is stored in the PostgreSQL database and is visualized in Rigi. Various queries can be
written in a combination of Structured Query Language (SQL) and Perl and applied to gener-
ate abstractions of the information. The results of the queries are visualized in Rigi, and fur-

CMU/SEI-2002-TR-024 13

ther queries can be written and applied, or the views can be manipulated manually to generate
architectural views of the system.

Architecture Reconstruction Method (ARM)

Guo and others have presented a semi-automatic architecture recovery method called the
software Architecture Reconstruction Method (ARM), which can be used to assist in architec-
ture recovery for systems that are designed and developed using patterns {Guo 99]. The ARM
consists of four major phases: (1) development of a concrete pattern-recognition plan, (2)
extraction of a source model, (3) detection and evaluation of pattern instances, and (4) recon-
struction and analysis of the architecture. Case studies have been presented showing the use
of the ARM to reconstruct systems and check the conformance of these systems against their
documented architectures. Pattern rules are transformed into pattern queries, which can be
applied automatically to detect pattern instances from the source model. Refinement of the
pattern queries can help to improve the precision of pattern recognition. Visualizations of the
recovered patterns are presented to the tool user and aligned with the designed pattern in-
stances.

Guo and others used the Dali workbench to perform architecture recovery work. An abstract
pattern rule was mapped into a concrete pattern rule and was converted into a SQL query.
This query was then applied to the database to extract instances of the pattern. This method is
aimed particularly at systems that have been developed using design patterns. This limits the
applicability of the method so that it may only apply to systems developed using design pat-
terns or in cases where one can be sure that design-pattern implementations have not eroded

over time.
Riva

Riva provides an approach to architecture reconstruction based on extracting information
from source code, loading the information into a Prolog fact database, and using Prolog to
build abstractions of that information and visualize those abstractions using Rigi [Riva 00].
The process that Riva describes consists of six phases: (1) develop a high-level architecture
description; (2) extract source information; (3) abstract to generate an architecture model; (4)
redocument the system; (5) analyze the system and come up with an improvement plan; and
(6) reorganize the architecture.

14 CMU/SEI-2002-TR-024

3.4 Other Techniques

The following are examples of other techniques, approaches, and tools that have been used
for architecture reconstruction.

Data Mining

Alborz is a user-assisted reverse engineering tool designed for use in analyzing and recover-
ing software architecture in the form of cohesive modules and subsystems [Sartipi 01]. The
tool’s operation is based on techniques taken from the areas of data mining, pattern matching,
and clustering. The tool user defines a graph-based architectural pattern of system modules
(subsystems) and their interactions based on domain knowledge, system documents, and tool-
provided clustering techniques. Through an iterative recovery process, the user constrains the
architectural pattern, and the tool provides a decomposition of the system’s entities into mod-
ules or subsystems that satisfy the constraints.

Software Architecture Reconstruction (SAR) Method

Krikhaar outlines the software architecture reconstruction (SAR) method based on a relation
partition algebra [Krikhaar 99, Feijs 95, Feijs 98b, Feijs 99]. This method employs five levels
of architecture reconstruction: initial, described, redefined, managed, and optimized. Krik-
haar introduces the notions of InfoPacks and ArchiSpects. InfoPacks or information packages
are packages of information extracted from a system. These packages can be extracted from
the source code, design documents, and other sources. An InfoPack also contains a descrip-
tion of the extraction steps to be taken to retrieve this information from the software. ArchiS-
pect is a view of the system that makes explicit a certain architectural structure. A set of these
ArchiSpects can be used to describe a system’s architecture. InfoPacks are used to construct
ArchiSpects. Philips uses the Teddy tool to visualize ArchiSpects [Feijs 98a].

X-RAY

Mendonga and Kramer have presented the X-RAY approach for recovering the architecture
of distributed software systems [Mendonga 01]. X-RAY is implemented in a Prolog environ-
ment. Information extracted from the source is represented as Prolog facts. Clustering, search
engines, and constructs for pattern description are implemented as Prolog predicates. Dot is
used to convert the outputted views to Postscript drawings [Koutsofios 92].

CMU/SEI-2002-TR-024 15

Architecture Description Languages

Eixelsberger and others have presented a process for recovering the architecture of a program
family [Eixelsberger 98]. This work was carried out as part of the European Commission
ESPRIT project Architecture Reasoning for Embedded Systems (ARES). The process in-
cludes two tasks: identification and recovery of architectural properties, and construction of
architectural descriptions for those properties. Eixelsberger and others developed a language
for describing properties of software architectures called architecture structure description
language (ASDL). A reference architecture representing the common architectural elements
of a product family is recovered based upon the ASDL description of the members of the
product family.

16 CMU/SEI-2002-TR-024

4 Evaluation

This section provides an evaluation of how well current architecture reconstruction ap-
proaches cover the practice scenarios presented in Section 2. The rating of each approach is
performed according to the following scale:

ns The approach does not seem to support the scenario.

u It is unknown how the approach covers the scenario.

~ The approach must be adapted in order to be applicable.

+ The approach supports the scenario.

++ The approach supports the scenario with a specific method and tool.

The scenario coverage for each approach is illustrated in Table 1.

View-Set Enforced- Quality- Common & Binary Mixed-
Architecture Attribute- Variable Components | Language
Changes Artifacts
Manual ~ ~ ~ ~ ~ ~
PBS ~ ~ ~ ns ns ~
Rigi ~ ns ns ns ns +
Shrimp ~ ns ns ns ns +
KLOCwork ~ ++ ns ns ns ~
Mitre ~ ns ns ns ns +
Dali ~ ~ - ns ns +
ARM ~ ~ ~ ns ns u
Riva ~ ~ u ns ns +
Alborz ~ ns ns ns ns ~
SAR ~ u ~ ns ns +
X_RAY ~ ~ u ns ns +
ASDL ~ ns ~ + ns u

Table 1: Coverage of Practice Scenarios

The ratings are sometimes fuzzy, because the approaches do not always address a specific
scenario context. But overall, we can extract the following results for each practice scenario:

e view-ser: No current approach or tool supports an explicit selection of architecture views
that can be systematically reconstructed in order to describe a system sufficiently and ad-
dress its stakeholders’ needs. We assume that existing approaches and tools could be
adapted to allow a view-set selection.

e enforced-architecture: This practice scenario is supported only by a commercial vendor
with a specific method and tool. The tool is used for analyzing and refactoring a system.
However, it is not embedded in a forward-engineering tool.

CMU/SEI-2002-TR-024 17

quality-attribute-changes: No current approach explicitly supports this practice scenario.
On one hand, further investigation is needed to determine if existing approaches and tools
can be adapted to cover this practice scenario. On the other hand, further architecture re-
search is necessary to uncover dependencies between quality attributes and architecture
patterns.

common and variable artifacts: Only the ASDL approach seems to cover this scenario.
However, commonality and variability analysis, as reported, is not supported by a tool.
Further research could lead to improved approaches and new tools to cover this scenario.

binary components: No current reconstruction approach or tool supports this practice
scenario. This deficiency should be addressed because of a fast-growing component mar-
ket and demands for component certification.

mixed-language: Several tools support mixed-language information. However, the ap-
proaches do not seem to describe how to build architectural views from information ex-
tracted from mixed-language systems. Further investigation is needed to determine how
to incorporate into these methods the ability to carry out architecture reconstruction in
mixed-language environments.

The manual approach neither supports nor fails to support a particular practice scenario.
However, a manual architecture reconstruction approach may not be economically justifiable
for an organization unless that organization can reap a lot of benefit from the approach.

18

CMU/SEI-2002-TR-024

5 Current and Future Work

Based on the evaluation results presented in Section 4, we are currently undertaking research
to address the demands of DoD and commercial organizations as encapsulated by the practice
scenarios presented in Section 2. We are

e enhancing the practice scenario catalog and adding solutions or similar business contexts
to already existing scenarios. To do this, we are planning to offer a specific Web page for
the architecture reconstruction community.

e creating a view catalog for architecture reconstruction with guidelines for stakeholders
and particular system types, based on the SEI’s architecture documentation work
[Clements 02b]. This work offers substantial solutions to the view-set practice scenario.

¢ developing a methodology with a supporting tool set for commonality and variability

analysis. The primary focus is to help organizations analyze and assess their products in a’

specific market for a potential migration to a product line. A second aspect of this re-
search is the development of a successor to the Dali architecture reconstruction work-
bench [Kazman 99, Dali 02] with an enriched tool set and architecture reconstruction
language capabilities. This work addresses the needs for enhancing the common and vari-
able artifacts scenario.

CMU/SEI-2002-TR-024 19

20

CMU/SEI-2002-TR-024

6 Conclusions

Practice scenarios describe recurring problems of architecture reconstruction needs at organi-
zations and present solutions to them. In their current state, the practice scenarios address
both how organizations apply reconstruction and the need for architecture reconstruction re-
search. Organizations can systematically apply architecture reconstruction techniques to
achieve their specific business goals, which are normally broader than the results of an iso-
lated reconstruction effort. The research commimity can contribute methods and tools to pre-
sent economical and efficient solutions for each scenario’s problem statement.

The evaluation has shown that current approaches do not cover the practice scenarios suffi-
ciently. Furthermore, we assume that a single approach will probably not cover all practice
scenarios. Therefore, the scenario solution space should describe approaches and strategies
that best fit a specific problem.

We assume that the application of architecture reconstruction will be used in a much broader
technical sense. The existing approach of abstracting from source code is difficult to apply in
black-box component markets. On the other hand, companies are being forced to assemble
“partial architectures” of commercial components to generate views of their overall system
architecture.

Finally, we suggest that there be a closer relationship between the architecture reconstruction
community and the architecture and component communities.

CMU/SEI-2002-TR-024 21

22

CMU/SEI-2002-TR-024

References

[Alexander 79]

[Bowman 99]

[Brand 98]

[Buschmann 96]

[Clements 02a]

[Clements 02b]

[Dali 02]

[Eixelsberger 98]

Alexander, C. The Timeless Way of Building. New York, NY: Oxford
University Press, 1979.

Bowman, T.; Holt, R.C.; & Brewster, N.V. “Linux as a Case Study: Its
Extracted Software Architecture,” 555-63. Proceedings of the 21st Inter-
national Conference on Software Engineering. Los Angeles, CA, May
16-22, 1999. New York, NY: IEEE Computer Society Press, 1999.

Van den Brand, M.GJ.; Sellink, M.P.A.; & Verhoef, C. “Current Parsing
Techniques in Software Renovation Considered Harmful,” 108-17. Pro-
ceedings of the Sixth International Workshop on Program Comprehen-
sion. Ischia, Italy, June 24-26, 1998. Los Alamitos, CA: IEEE Computer
Society Press, 1998.

Buschmann, F.; Meunier, R.; Rohmert, H.; Sommerlad, P.; & Stal, M.
Pattern-Oriented Software Architecture. New York, NY: John Wiley &
Sons, 1996.

Clements, P. & Northrop, L. Software Product Lines. Boston, MA: Addi-
son Wesley, 2002.

Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, I.; Little, R.;
Nord, R.; & Stafford, J. Documenting Software Architectures: Views and
Beyond. Boston, MA: Addison Wesley, 2002.

The Dali Architecture Reconstruction Workbench.
<http://www.sei.cmu.edu/ata/products_services/dali.html> (2002).

Eixelsberger, W.; Ogris, M.; Gall, H.; & Bellay, B. “Software Architec-
ture Recovery of a Program Family,” 508-11. Proceedings of the Inter-
national Conference on Software Engineering. Kyoto, Japan, April 19-
25, 1998. Los Alamitos, CA: IEEE Computer Society Press, 1998.

CMU/SEI-2002-TR-024

- 23

[Etzioni 64]

[Feijs 95]

[Feijs 98a]

[Feijs 98b]

[Feijs 99]

[Finnigan 97]

[Guo 99]

[Harris 95a]

[Harris 95b]

Etzioni, A. Modern Organizations. Englewood Cliffs. NJ: Prentice-Hall,
1964.

Feijs, LM.G. & van Ommering, R.C. Theory of Relations and Its Appli-
cations to Software Structuring (Phillips Research Internal Report,
RWB-510-re-95011). Eindhoven, The Netherlands, 1995.

Feijs, LM.G. & de Jong, R.P. “3D Visualization of Software Architec-
tures.” Communications of the ACM 41, 12 (December 1998): 73-78.

Feijs, L.M.G. & Krikhaar, R.L. “Relation Algebra with Multi-Relations.”
International Journal of Computer Mathematics 70, 1 (November 1998):
57-74.

Feijs, LM.G & van Ommering, R.C. “Relation Partition Algebra—
Mathematical Aspects of Uses and Part-Of Relations.” Science of Com-
puter Programming 33, 2 (February 1999): 163-212.

Finnigan, P.J.; Holt, R.; Kalas, I.; Kerr, S.; Kontogiannis, K.; Mueller,
H.; Mylopoulos, J.; Perelgut, S.; Stanley, M.; & Wong, K. “The Portable
Bookshelf.” IBM Systems Journal 36, 4 (November 1997): 564-93.

Guo, G; Atlee, J.; & Kazman, R. *“A Software Architecture Reconstruc-
tion Method,” 225-243. Proceedings of the First Working International
Federation for Information Processing (IFIP) Conference on Software
Architecture. San Antonio, TX, February 22-24, 1999. Norwell. MA:
Kluwer Academic Publishers, 1999.

Harris, D.R.; Reubenstein, H.B.; & Yeh, A.S. “Recognizers for Extract-
ing Architectural Features from Source Code,” 252-61. Proceedings of
the Second Working Conference on Reverse Engineering. Toronto, On-
tario, July 14-16, 1995. Los Alamitos, CA: IEEE Computer Society
Press, 1995.

Harris, D.R.; Reubenstein, H.B.; & Yeh, A.S. “Reverse Engineering to
the Architectural Level,” 186-95. International Conference on Software
Engineering. Seattle, WA, April 23-30, 1995. New York, NY: I[EEE
Computer Society Press: 1995.

24

CMU/SEI-2002-TR-024

[Hofmeister 00]

[Jones 98]

[Kazman 99]

[Klocwork 02]

[Koutsofios 92]

[Krikhaar 99]

[Krutchen 95]

[Laine 01]

[Lammel 01a]

[Lammel 01b]

[Lassing 02]

Hofmeister, C.; Nord, R.; & Soni, D. Applied Software Architecture.
Boston, MA: :\ddison Wesley, 2000.

Jones, C. The Year 2000 Problem—Quantifying the Costs and Assessing
the Consequences. Boston, MA: Addison Wesley, 1998.

Kazman, R. & Carriére, S.J. “Playing Detective: Reconstructing Soft-
ware Architecture from Available Evidence.” Journal of Automated Soft-
ware Engineering 6, 2 (April 1999): 107-138.

KLOCwork inSight. <http://www.klocwork.com/products/inSight.html>
(2002).

Koutsofios, E. & North, S. Drawing Graphs With Dot. Murray Hill, NJ:
AT&T Bell Laboratories, 1992.

" Krikhaar, R.L. “Software Architecture Reconstruction.” PhD diss., Uni-

versity of Amsterdam, 1999.

Kruchten, P. “The “4+1’ View Model of Software Architecture.” IEEE
Software 12, 6 (November 1995): 42-50.

Laine, PK. “The Role of Software Architecture in Solving Fundamental
Problems in Object-Oriented Development of Large Embedded Sys-
tems,” 14-23. Proceedings of the Working IEEE/IFIP Conference on
Software Architecture. Amsterdam, Netherlands, August 28-31, 2001.
Los Alamitos, CA: IEEE Computer Society Press, 2001.

Lémmel, R. & Verhoef, C. “Semi-Automatic Grammar Recovery.” Soft-
ware Practice and Experience 31, 15 (December 2001): 1395-1438.

Lammel, R. & Verhoef, C. “Cracking the 500-Language Problem.” IEEE
Software 18, 6 (December 2001): 78-88.

Lassing, N. “Architecture-Level Modifiability Analysis.” PhD diss.,
Vrije Universiteit Amsterdam, 2002.

CMU/SEI-2002-TR-024

25

[Locke 92]

[Mendonga 01]

[PBS 02]

[Rigi 02]

[Riva 00]

[Sartipi 01]

[Shrimp 02]

[Storey 01]

[Wallnau 02]

Locke, C.D. “Cyclic Executive vs. Fixed Priority Executives.” Real-
Time Systems 4, 1 (March 1992): 37-53.

Mendonga, N.C. & Kramer, J. “Architecture Recovery for Distributed
Systems.” SWARM Forum at the Eighth Working Conference on Reverse
Engineering. Stuttgart, Germany, October 2-5, 2001. Los Alamitos, CA:
IEEE Computer Society, 2001. <http://www.program-
transformation.org/twiki/bin/view/Transform/SwarmForum>.

The Portable Bookshelf. <http://swag.uwaterloo.ca/pbs/> (2002).

The Rigi Tool. <http://www.rigi.csc.uvic.ca/> (2002).

Riva, C. “Reverse Architecting: An Industrial Experience Report,” 42-
50. Proceedings of the Seventh Working Conference on Reverse Engi-
neering. Brisbane, Australia, November 23-25, 2000. Los Alamitos, CA:
IEEE Computer Society Press, 2001.

Sartipi, K. & Kontogiannis, K. “A Graph Pattern Matching Approach to
Software Architecture Recovery,” 408-419. Proceedings of the IEEE
International Conference on Software Maintenance. Florence, Italy, No-
vember 7-9, 2001. Los Alamitos, CA: IEEE Computer Society Press,
2001.

SHriMP Views. <http://www.csr.uvic.ca/shrimpviews/> (2002).

Storey, M.A.D.; Best, C.; & Michaud, J. “SHriMP Views: An Interactive
Environment for Exploring Java Programs,” 111-12. Proceedings of the
Ninth International Workshop on Program Comprehension. Toronto,
Ontario, May 12-13, 2001. Los Alamitos, CA: IEEE Computer Society
Press, 2001.

Wallnau, K.; Hissam, S.A.; & Seacord, R.C. Building Systems from
Commercial Components. Boston, MA: Addison Wesley, 2002.

26

CMU/SEI-2002-TR-024

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response,

inctuding the time for reviewing instructions, searching

existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions tor reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arington, VA 22202-4302, and to the Office of

Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORTDATE

3. REPORT TYPE AND DATES COVERED

{Leave Blank) August 2002 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Software Architecture Reconstruction: Practice Needs and Current F19628-00-C-0003
Approaches '

6. AUTHOR(S)

Liam O'Brien, Christoph Stoermer, Chris Verhoef

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TR-024

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2002-024

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

128 DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Software architectures serve as the blueprints for systems, and they are central to the development of soft-
ware product lines and the design of component-based systems. In existing systems, the architecture often
must be reconstructed to reflect the as-built system accurately. This report presents the concept of practice
scenarios for architecture reconstruction, which outline common problem/solution pairs that can be used in
the strategic application of architecture reconstruction at Department of Defense (DoD) and commercial or-
ganizations. Based on an investigation of already developed and presented reconstruction approaches, the
report describes deficiencies that have been uncovered in several practice scenarios and proposes improve-

ments.

14. SUBJECT TERMS

architecture reconstruction, practice scenarios, software architecture,
software product line

15. NUMBER OF PAGES
38

16. PRICE CODE

19. SECURITY CLASSIFICATION OF

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF
OF REPORT THIS PAGE ABSTRACT
Unclassified Unclassified Unclassified

20. LIMITATION OF ABSTRACT

uL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

